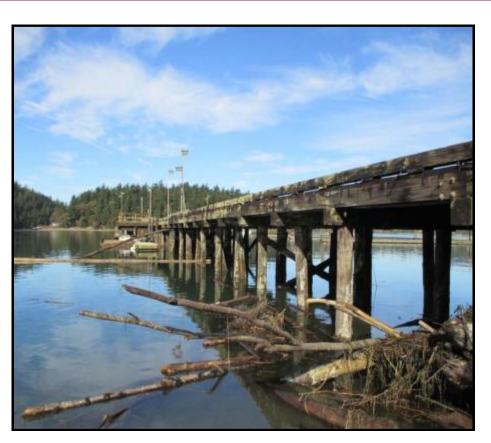


CORNET BAY PIER RETROFIT

Oak Harbor, Washington



INTRODUCTION

- **Project Overview**
- **Condition Assessment**
- **Proposed Habitat Restoration**
- **Segment 1:Abutment Options**
- **Segment 2: Superstructure Options**
- **Segment 2: Cost Comparison**
- **Segment 2: Recommendations**
- **Segment 3: Pier Support Concept**
- **Next Steps & Considerations**

PROJECT OVERVIEW

Three project elements:

- 1. New abutment and backwall
- 2. Pile-supported superstructure
- 3. Pier support piles
- Repairs to existing pier
- Regrade of shoreline to match adjacent slopes
- 6. Plantings.
- Drift log erosion protection.

CONDITION ASSESSMENT

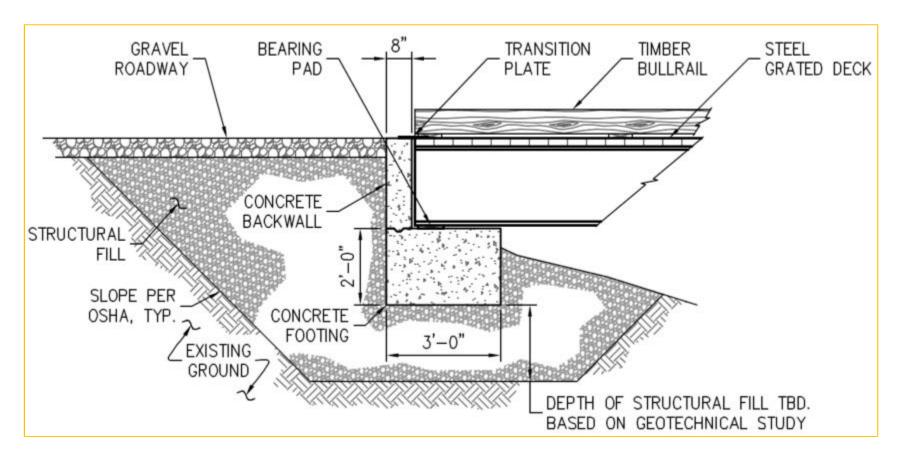
Condition assessment performed by PNDFebruary 17th, 2015 :

- **1. Deck-** (18) timber deck boards need to be replaced.
- **2. Stringers-** Good Condition. Tar paper serves as a barrier to protect from water intrusion and debris build-up.
- 3. Pile caps- Generally appeared in good condition with the exception of the pile cap at Bent 16. The Bent 16 pile cap was found cracked/ split at the north end above Pile D.
- **4. Piles-** In good condition with the exception of five (5) piles which exhibited signs of significant section loss.
- **5. Lateral bracing- G**enerally found in poor condition and requires corrective action.

HABITAT RESTORATION

- Move abutment upland
- Span resulting distance
- Regrade beach
- Anchor drift logs

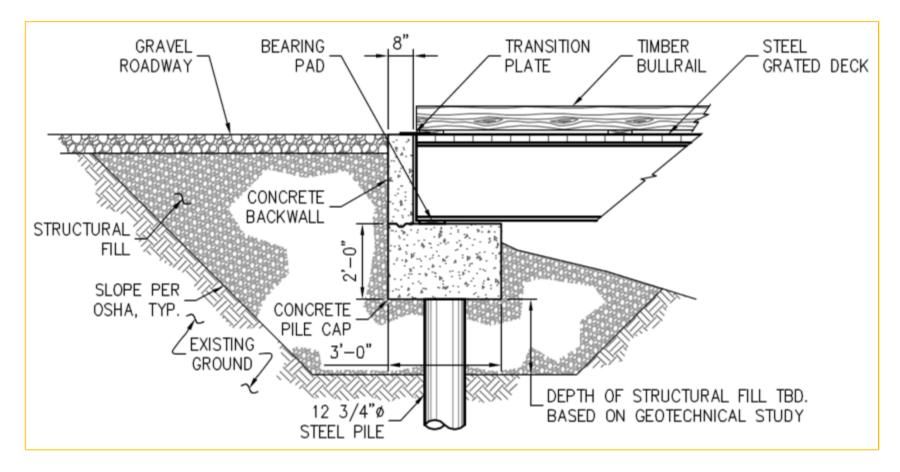
- **Plantings**
- Reinstall utilities



ABUTMENT OPTIONS

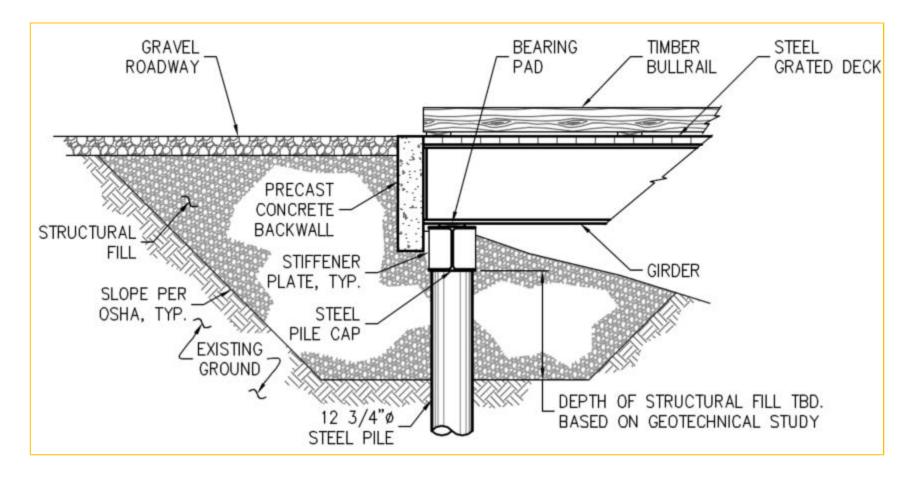
BULKHEAD OPTION 1

- Option 1- Standard spread footing type abutment. This option requires competent in-situ subgrade.
- Would be the simplest and most cost effective.



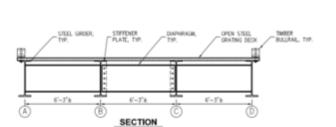
BULKHEAD OPTION 2

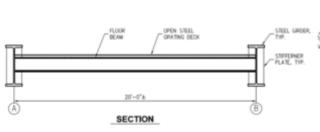
• Option 2 is similar to the standard spread footing with a pile-supported foundation. This more complex option will be required if soft soils are encountered.

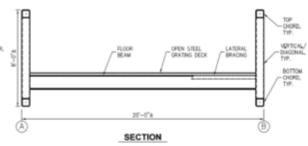


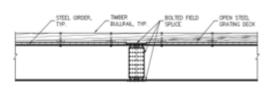
BULKHEAD OPTION 3

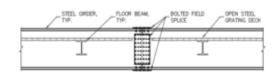
• Option 3 - A fully steel option which could be advantageous if concrete costs escalate or there is no other cast-in-place concrete utilized on the project.

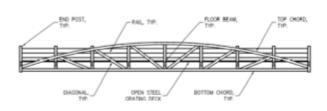


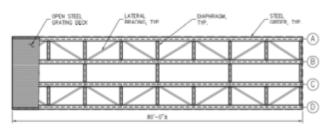


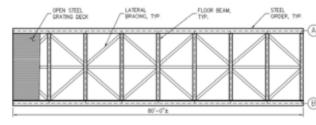

SUPERSTRUCTURE OPTIONS

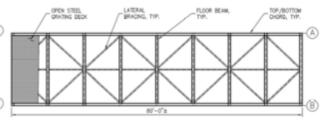

SUPERSTRUCTURE O










ELEVATION

ELEVATION

ELEVATION

PLAN

STEEL TRUSS (OPTION 3)

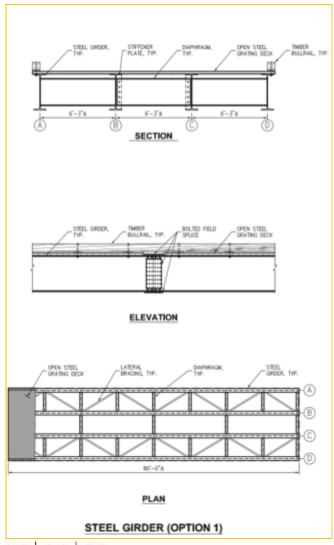
PLAN

STEEL GIRDER (OPTION 1)

STEEL THRU-GIRDER (OPTION 2)

PLAN

49% open area

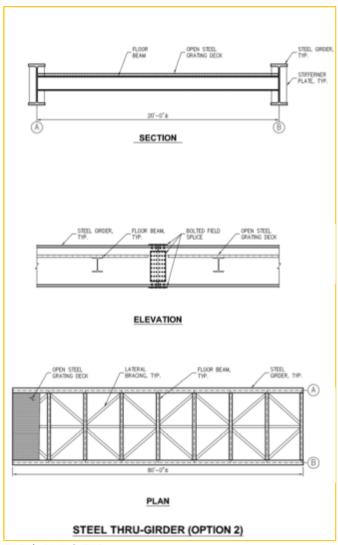

42% open area

42% open area

OPTION 1: STEEL TRUSS

	STEEL TRUSS ESTIMATE (2017	\$)	
1	Site Mobilization and Demobilization	\$	75,000
2	Demolition and Site Work	\$	178,000
3	Utilities	\$	30,000
4	Steel Truss Superstructure	\$	293,000
5	Abutment	\$	28,000
6	Pier	\$	48,000
7	Landscaping/Planting	\$	60,000
	Construction Subtotal	\$	712,000
8	Cost Escalation for Year 2017	\$	58,000
9	Construction Contingency (Assume 20%)	\$	154,000
10	Washington State Sales Tax (8.7%)	\$	80,000
11	Final Design and Construction Admin. (Assume 10%)	\$	77,000
	Steel Truss Superstructure Construction Total	\$	1,081,000

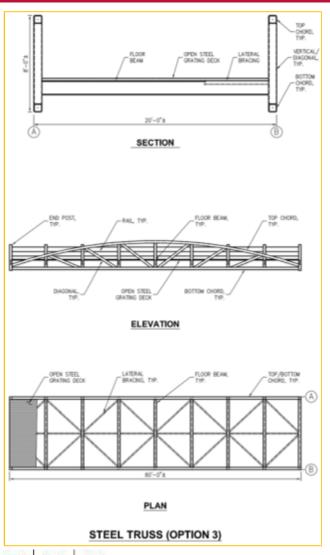
Superstructure load rating: 25,000 lbs.



OPTION 2: TWO-GIRDER

	TWO-GIRDER ESTIMATE	
1	Site Mobilization and Demobilization	\$ 40,000
2	Demolition and Site Work	\$ 89,000
3	Utilities	\$ 30,000
4	2 Girder Superstructure	\$ 71,000
5	Abutment	\$ 28,000
6	Pier	\$ 28,000
7	Landscaping/Planting	\$ 60,000
	Construction Subtotal	\$ 346,000
8	Geotechnical Exploration and Report	\$ 30,000
9	Cost Escalation for Year 2017	\$ 31,000
10	Construction Contingency (Assume 20%)	\$ 75,000
11	Washington State Sales Tax (8.7%)	\$ 39,000
12	Final Design and Construction Admin. (Assume 10%)	\$ 38,000
	Steel Thru-Girder Construction Total	\$ 559,000

• Superstructure load rating: 25,000 lbs.



OPTION 3: FOUR-GIRDER

	4-GIRDER ESTIMATE	
1	Site Mobilization and Demobilization	\$ 50,000
2	Demolition and Site Work	\$ 93,000
3	Utilities	\$ 30,000
4	2 Girder Superstructure	\$ 141,000
5	Abutment	\$ 28,000
6	Pier	\$ 48,000
7	Landscaping/Planting	\$ 60,000
	Construction Subtotal	\$ 450,000
8	Geotechnical Exploration and Report	\$ 30,000
9	Cost Escalation for Year 2017	\$ 39,000
10	Construction Contingency (Assume 20%)	\$ 98,000
11	Washington State Sales Tax (8.7%)	\$ 51,000
12	Final Design and Construction Admin. (Assume 10%)	\$ 49,000
	Steel Thru-Girder Construction Total	\$ 717,000

Superstructure load rating: 25,000 lbs.

PND's preferred option is the two-girder superstructure option

PROS OF OPTION 2

- Lowest cost option
- 42% open, casting lower amount of shade on nearshore habitat than the existing structure
- Low impact to shallow water habitat
- Pairs well with pultruded grating
- Offers a traditional architectural look

CONS OF OPTION 2

- Is 7% less open than option 3.
- Offers less modern architectural choices

ENGINEER'S

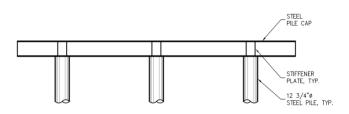
PND's preferred option is the two-girder superstructure

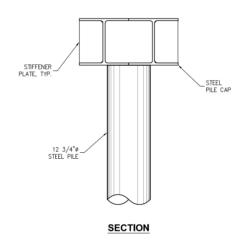
DeKalb Pier Repair, Replacement & Renovation City of Port Orchard

ENGINEER'S RECOMMENDATION

PND's preferred option is the two-girder superstructure option

Huntzinger Road Fishing Pier Grant County PUD


PIER SUPPORT CONCEPT



PHER SUPPORT CONCEPT

ELEVATION

STEEL PILE (OPTION 1)

 The pier support option replaces the nearshore pile bent and could be comprised of steel or timber materials.

NEXT STEPS & CONSIDERATIONS

- Funding
- Benefits to Habitat
 - Sediment dam removed
 - Potential for debris lodging reduced
 - More light penetration
 - Opportunity for plantings
 - Permitability
- Scheduling
 - 30% design 11/2015
 - Permits submitted 1/2016
 - 90% Design 6/2016
 - Final Design 10/2016
 - Begin construction 11/2016

CONTACT US

1736 Fourth Avenue S, Suite A Seattle, Washington 98134 206.624.1387 www.pndengineers.com Mike Hartley, P.E. mhartley@pndengineers.com

Steve Robert, P.E. srobert@pndengineers.com

